Publications

* equally contributing author
^ corresponding author

Cheng X*, Lindner H*^, Hoffmann L, Filho AAP, Duarte PR, Boxall SF, Gündogmus YB, Pritchard JH, Haldenby S, Gemmell M, Darby A, Läderach M, Hartwell J, Raissig MT^. 2024. MUTE drives asymmetric divisions to form stomatal subsidiary cells in Crassulaceae succulents. bioRxiv. doi:10.1101/2024.12.27.630159

Spiegelhalder RP, Berg LS, Nunes TDG, Dörr M, Jesenofsky B, Lindner H, Raissig MT^. 2024. Dual role of BdMUTE during stomatal development in the model grass Brachypodium distachyon. Development dev.203011. doi:10.1242/dev.203011

Grones C, Eekhout T, Shi D, Neumann M, Berg LS, Ke Y, Shahan R, Cox KL, Gomez-Cano F, Nelissen H, Lohmann JU, Giacomello S, Martin OC, Cole B, Wang J-W, Kaufmann K, Raissig MT, Palfalvi G, Greb T, Libault M, De Rybel B. 2024. Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics. Plant Cell 36:812–828. doi:10.1093/plcell/koae003

Cheng, X., & Raissig, M. T.^ (2023). From grasses to succulents – development and function of distinct stomatal subsidiary cells. The New Phytologist, 239(1), 47–53. https://doi.org/10.1111/nph.18951

Nunes, T. D. G., Berg, L. S., Slawinska, M. W., Zhang, D., Redt, L., Sibout, R., Vogel, J. P., Laudencia-Chingcuanco, D., Jesenofsky, B., Lindner, H., & Raissig, M. T.^ (2023). Regulation of hair cell and stomatal size by a hair cell-specific peroxidase in the grass Brachypodium distachyon. Current Biology, 33(9), 1844–1854.e6. https://doi.org/10.1016/j.cub.2023.03.089        -> open-access, updated preprint

McKown, K. H., Anleu Gil, M. X., Mair, A., Xu, S.-L., Raissig, M. T., & Bergmann, D. C.^ (2023). Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development. The Plant Cell, 35(2), 756–775. https://doi.org/10.1093/plcell/koac341

Zhang, D., Spiegelhalder, R. P., Abrash, E. B., Nunes, T. D. G. , Hidalgo, I., Anleu Gil, M. X., Jesenofsky, B., Lindner, H., Bergmann, D. C.^, Raissig, M. T.^ (2022). Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses. eLife 11:e79913. https://doi.org/10.7554/eLife.79913        -> press | preprint

Raissig, M. T.*^, Woods, D. P.*^ (2022). The wild grass Brachypodium distachyon as a developmental model system. In: Goldstein B, Srivastava M, editors. Current Topics in Developmental Biology. Academic Press. pp. 33–71. https://doi.org/10.1016/bs.ctdb.2021.12.012         -> open access preprint

Nunes, T. D. G., Slawinska, M. W., Lindner, H., & Raissig, M. T.^ (2022). Quantitative effects of environmental variation on stomatal anatomy and gas exchange in a grass model. Quantitative Plant Biology, 3, e6. https://doi.org/10.1017/qpb.2021.19

Spiegelhalder, R. P. & Raissig, M. T.^ (2021). Morphology made for movement: formation of diverse stomatal guard cells. Curr Opin Plant Biol 63:102090. https://doi.org/10.1016/j.pbi.2021.102090

Nunes, T. D. G.*, Zhang, D.*, Raissig, M. T.^ (2020) Form, development and function of grass stomata. Plant J., 101(4):780-799. http://doi.org/10.1111/tpj.14552

Raissig, M. T.^, Matos, J. L., Gil, M. X. A., Kornfeld, A., Bettadapur, A., Abrash, E., Allison, H. R., Badgley, G., Vogel, J. P., Berry, J. A., Bergmann, D. C.^ (2017). Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science, 355(6330), 1215–1218. http://doi.org/10.1126/science.aal3254            -> press7-language blurb | F1000

Raissig, M. T.*, Abrash, E.*, Bettadapur, A., Vogel, J. P., & Bergmann, D. C. (2016). Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. Proc Natl Acad Sci USA, 113(29), 8326-8331. http://doi.org/10.1073/pnas.1606728113         -> press

Raissig, M. T., Bemer, M., Baroux, C., & Grossniklaus, U. (2013a). Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet, 9(12), e1003862. http://doi.org/10.1371/journal.pgen.1003862

Raissig, M. T., Gagliardini, V., Jaenisch, J., Grossniklaus, U., & Baroux, C. (2013b). Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds. J Vis Exp, (76), e50371–e50371. http://doi.org/10.3791/50371

Baroux, C., Autran, D., Raissig, M. T., Grimanelli, D., & Grossniklaus, U. (2013). Parental contributions to the transcriptome of early plant embryos. Curr Opin Genet Dev, 23(1), 72–74. http://doi.org/10.1016/j.gde.2013.01.006

Schmidt, A., Wöhrmann, H. J. P., Raissig, M. T., Arand, J., Gheyselinck, J., Gagliardini, V., et al. (2013). The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J, 73(5), 776–787. http://doi.org/10.1111/tpj.12070

Wöhrmann, H. J. P., Gagliardini, V., Raissig, M. T., Wehrle, W., Arand, J., Schmidt, A., et al. (2012). Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus. Genes Dev, 26(16), 1837–1850. http://doi.org/10.1101/gad.195123.112

Lindner, H.*, Raissig, M. T.*, Sailer, C., Shimosato-Asano, H., Bruggmann, R., & Grossniklaus, U. (2012). SNP-Ratio Mapping (SRM): identifying lethal alleles and mutations in complex genetic backgrounds by next-generation sequencing. Genetics, 191(4), 1381–1386. http://doi.org/10.1534/genetics.112.141341

Autran, D.*, Baroux, C.*, Raissig, M. T., Lenormand, T., Wittig, M., Grob, S., et al. (2011). Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell, 145(5), 707–719. http://doi.org/10.1016/j.cell.2011.04.014

Baroux, C., Raissig, M. T., & Grossniklaus, U. (2011). Epigenetic regulation and reprogramming during gamete formation in plants. Curr Opin Genet Dev, 21(2), 124–133. http://doi.org/10.1016/j.gde.2011.01.017

Raissig, M. T., Baroux, C., & Grossniklaus, U. (2011). Regulation and flexibility of genomic imprinting during seed development. Plant Cell, 23(1), 16–26. http://doi.org/10.1105/tpc.110.081018