Publications
* equally contributing author ^ corresponding author
Cheng X*, Lindner H*^, Hoffmann L, Filho AAP, Duarte PR, Boxall SF, Gündogmus YB, Pritchard JH, Haldenby S, Gemmell M, Darby A, Läderach M, Hartwell J, Raissig MT^. 2024. MUTE drives asymmetric divisions to form stomatal subsidiary cells in Crassulaceae succulents. bioRxiv. doi:10.1101/2024.12.27.630159
Spiegelhalder RP, Berg LS, Nunes TDG, Dörr M, Jesenofsky B, Lindner H, Raissig MT^. 2024. Dual role of BdMUTE during stomatal development in the model grass Brachypodium distachyon. Development dev.203011. doi:10.1242/dev.203011
Grones C, Eekhout T, Shi D, Neumann M, Berg LS, Ke Y, Shahan R, Cox KL, Gomez-Cano F, Nelissen H, Lohmann JU, Giacomello S, Martin OC, Cole B, Wang J-W, Kaufmann K, Raissig MT, Palfalvi G, Greb T, Libault M, De Rybel B. 2024. Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics. Plant Cell 36:812–828. doi:10.1093/plcell/koae003
Cheng, X., & Raissig, M. T.^ (2023). From grasses to succulents – development and function of distinct stomatal subsidiary cells. The New Phytologist, 239(1), 47–53. https://doi.org/10.1111/nph.18951
Nunes, T. D. G., Berg, L. S., Slawinska, M. W., Zhang, D., Redt, L., Sibout, R., Vogel, J. P., Laudencia-Chingcuanco, D., Jesenofsky, B., Lindner, H., & Raissig, M. T.^ (2023). Regulation of hair cell and stomatal size by a hair cell-specific peroxidase in the grass Brachypodium distachyon. Current Biology, 33(9), 1844–1854.e6. https://doi.org/10.1016/j.cub.2023.03.089 -> open-access, updated preprint
McKown, K. H., Anleu Gil, M. X., Mair, A., Xu, S.-L., Raissig, M. T., & Bergmann, D. C.^ (2023). Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development. The Plant Cell, 35(2), 756–775. https://doi.org/10.1093/plcell/koac341
Zhang, D., Spiegelhalder, R. P., Abrash, E. B., Nunes, T. D. G. , Hidalgo, I., Anleu Gil, M. X., Jesenofsky, B., Lindner, H., Bergmann, D. C.^, Raissig, M. T.^ (2022). Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses. eLife 11:e79913. https://doi.org/10.7554/eLife.79913 -> press | preprint
Raissig, M. T.*^, Woods, D. P.*^ (2022). The wild grass Brachypodium distachyon as a developmental model system. In: Goldstein B, Srivastava M, editors. Current Topics in Developmental Biology. Academic Press. pp. 33–71. https://doi.org/10.1016/bs.ctdb.2021.12.012 -> open access preprint
Nunes, T. D. G., Slawinska, M. W., Lindner, H., & Raissig, M. T.^ (2022). Quantitative effects of environmental variation on stomatal anatomy and gas exchange in a grass model. Quantitative Plant Biology, 3, e6. https://doi.org/10.1017/qpb.2021.19
Spiegelhalder, R. P. & Raissig, M. T.^ (2021). Morphology made for movement: formation of diverse stomatal guard cells. Curr Opin Plant Biol 63:102090. https://doi.org/10.1016/j.pbi.2021.102090
Nunes, T. D. G.*, Zhang, D.*, Raissig, M. T.^ (2020) Form, development and function of grass stomata. Plant J., 101(4):780-799. http://doi.org/10.1111/tpj.14552
Raissig, M. T.^, Matos, J. L., Gil, M. X. A., Kornfeld, A., Bettadapur, A., Abrash, E., Allison, H. R., Badgley, G., Vogel, J. P., Berry, J. A., Bergmann, D. C.^ (2017). Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science, 355(6330), 1215–1218. http://doi.org/10.1126/science.aal3254 -> press | 7-language blurb | F1000
Raissig, M. T.*, Abrash, E.*, Bettadapur, A., Vogel, J. P., & Bergmann, D. C. (2016). Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. Proc Natl Acad Sci USA, 113(29), 8326-8331. http://doi.org/10.1073/pnas.1606728113 -> press
Raissig, M. T., Bemer, M., Baroux, C., & Grossniklaus, U. (2013a). Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet, 9(12), e1003862. http://doi.org/10.1371/journal.pgen.1003862
Raissig, M. T., Gagliardini, V., Jaenisch, J., Grossniklaus, U., & Baroux, C. (2013b). Efficient and rapid isolation of early-stage embryos from Arabidopsis thaliana seeds. J Vis Exp, (76), e50371–e50371. http://doi.org/10.3791/50371
Baroux, C., Autran, D., Raissig, M. T., Grimanelli, D., & Grossniklaus, U. (2013). Parental contributions to the transcriptome of early plant embryos. Curr Opin Genet Dev, 23(1), 72–74. http://doi.org/10.1016/j.gde.2013.01.006
Schmidt, A., Wöhrmann, H. J. P., Raissig, M. T., Arand, J., Gheyselinck, J., Gagliardini, V., et al. (2013). The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J, 73(5), 776–787. http://doi.org/10.1111/tpj.12070
Wöhrmann, H. J. P., Gagliardini, V., Raissig, M. T., Wehrle, W., Arand, J., Schmidt, A., et al. (2012). Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus. Genes Dev, 26(16), 1837–1850. http://doi.org/10.1101/gad.195123.112
Lindner, H.*, Raissig, M. T.*, Sailer, C., Shimosato-Asano, H., Bruggmann, R., & Grossniklaus, U. (2012). SNP-Ratio Mapping (SRM): identifying lethal alleles and mutations in complex genetic backgrounds by next-generation sequencing. Genetics, 191(4), 1381–1386. http://doi.org/10.1534/genetics.112.141341
Autran, D.*, Baroux, C.*, Raissig, M. T., Lenormand, T., Wittig, M., Grob, S., et al. (2011). Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell, 145(5), 707–719. http://doi.org/10.1016/j.cell.2011.04.014
Baroux, C., Raissig, M. T., & Grossniklaus, U. (2011). Epigenetic regulation and reprogramming during gamete formation in plants. Curr Opin Genet Dev, 21(2), 124–133. http://doi.org/10.1016/j.gde.2011.01.017
Raissig, M. T., Baroux, C., & Grossniklaus, U. (2011). Regulation and flexibility of genomic imprinting during seed development. Plant Cell, 23(1), 16–26. http://doi.org/10.1105/tpc.110.081018